Mobile menu icon
Skip to navigation | Skip to main content | Skip to footer
Mobile menu icon Search iconSearch
Search type

The University of Manchester at Harwell

Catalysis

Design and production of advanced novel catalytic materials.

Multi-step reactions represent a key step towards the utilisation of renewable biomass feedstocks and their derivatives for sustainable chemical production. Whilst convention has typically dictated an approach of focusing on each single step discreetly, catalytic cascades offer significant economic and environmental advantages. Developing multifunction materials, possessing two or more different active sites, is critical to the exploitation of such processes.

Team

Principal Investigator

PDRA

  • Cameron Price
  • Charalampos (Harry) Drivas

Students

  • Harry Clarke (MEng)
  • Shengzhe Ding (PhD)
  • Aina Syadhida Jamal (PhD)
  • Yang Peng (PhD)
  • Oliver Ruthven (MEng)
  • Antonio Torres Lopez (PhD)
  • Huaizhong Xiang (PhD)
  • Xinyue Zhou (PhD)

Single-atom catalytic sites represent the ultimate in heterogeneous catalysis active site miniaturisation, although optimal performance may not necessarily have been achieved. The size gap between these single sites and nanoparticle systems spans from two-atom species up to clusters of tens of atoms.

This size domain may well prove to be superior, especially in bimolecular reactions or where bimetallic species have displayed interesting synergies.

Establishing these two independent but interwoven themes will be supported through grant applications and studentships. The development and growth of these two areas of research will enable both new collaborations and further grow existing ones.

These projects will stimulate operando cell development for use on the spectroscopy beamlines, whilst also utilising the advanced imaging capabilities at Diamond. The scientific knowledge generated will provide a platform to foster interactions with industry and funding applications.

Projects

Liquid phase catalysis set-up
Operando liquid phase catalysis set-up on B18 at Diamond Light Source probing catalysts stability during biomass upgrading

Unlocking multi-step catalytic cascade reactions necessitates the development of novel catalytic systems to predictably drive a cascade so that each individual catalytic transformation occurs solely over the desired site.

The spatial compartmentalisation of two different Platinum group metal active sites, within a hierarchical porous structure represent one strategy, with the power of such advanced materials already displayed for a cascade selective oxidation reaction.

Sub-nanometre active species – from angstrom-sized clusters to single-atom alloys represent a key driver to efficient utilisation of global resources.

Reactions on single-atom alloy systems have shown promise, eg. hydrogen dissociation and methane activation, although further synthesis developments and on-stream stability assessments are paramount if these are to find industrial applications.

Additionally, the potential advantage of diatomic and smaller cluster active species, especially with regard to bimetallic systems, is still to be explored.

Selected publications

  • A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions,
    Mark A. Isaacs, Christopher M. A. Parlett, Neil Robinson, Lee J. Durndell, Jinesh C. Manayil, Simon K. Beaumont, Shan Jiang, Nicole S. Hondow, Alexander C. Lamb, Deshetti Jampaiah, Michael L. Johns, Karen Wilson & Adam F. Lee, Nature Catalysis, 2020, volume 3, pages 921–931.
  • Shining light on the solid–liquid interface: in situ/operando monitoring of surface catalysis, Leila Negahdar, Christopher MA Parlett, Mark A Isaacs, Andrew M Beale, Karen Wilson, Adam F Lee, Catalysis Science and Technology, 2020, Volume 10, Pages 5362-5385
  • Ethanol steam reforming for hydrogen production over hierarchical macroporous mesoporous SBA-15 supported nickel nanoparticles, Christopher MA Parlett, Lee J Durndell, Mark A Isaacs, Xiaotong Liu, Chunfei Wu, Topics in Catalysis, 2020, Volume 63, pages 403-412
  • Control of zeolite microenvironment for propene synthesis from methanol, Longfei Lin, Mengtian Fan, Alena M Sheveleva, Xue Han, Zhimou Tang, Joseph H Carter, Ivan Da Silva, Christopher MA Parlett, Floriana Tuna, Eric JL McInnes, German Sastre, Svemir Rudić, Hamish Cavaye, Stewart F Parker, Yongqiang Cheng, Luke L Daemen, Anibal J Ramirez-Cuesta, Martin P Attfield, Yueming Liu, Chiu C Tang, Buxing Han, Sihai Yang, Nature Communications, 2021, 12, Article number 822
  • Recent developments in multifunctional catalysts for fatty acid hydrodeoxygenation as a route towards biofuels, Shengzhe Ding, Christopher MA Parlett, Xiaolei Fan, Molecular Catalysis, 2021, 111492